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Abstract: - The problem of laminar forced convection on a horizontal plate has been analyzed through three 

similarity transformation methods which depend on the finite group of transformations.  Comparisons between 

these methods are performed and the results are found to be in very good agreement that the new systematic 

method by Adnan et al [2], [3], is the simplest and more general.  Furthermore four transformed similarity 

equations of the problem under consideration were obtained very easily under this method. General form of 

absolute invariants and the corresponding new variables of certain groups are determined. The Formulation of 

the New Systematic Method is explained in appendix -A.  
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1 Introduction 
Solving nonlinear partial differential equation is 

a fundamental task and of great importance. The 

similarity methods to find the symmetry group and 

similarity representations of nonlinear partial 

differential equations is one of the most powerful 

tools in mathematical physics. Morgan [21] and 

Michal [16] are pioneers in developing the 

similarity solutions of partial differential equations 

under the appropriate one-parameter group of 

transformations. Birkhoff [6] applied one-parameter 

group of transformation to obtain similarity 

solutions of some problems in the fluid mechanics. 

Later on Manohar [15], Hansen [10] and Ames [4], 

[5] extend the methods to special forms of n-

parameter groups. 

A variety methods and theories were presented 

by Moran and his co-workers [17], [18], [19] and 

[20], for reducing systems of partial differential 

equations. 

  Most recently, Al-salihi et al [2], [3],, proposed 

a method simpler than the systematic group 

formalism Moran and Gaggioli [18], (called the new 

systematic method). 

The objective of this paper is to derive similarity 

equations for laminar forced convection on a 

horizontal plate using three methods of similarity. 

The outline of the proposed method is given in 

Appendix – A. 

 

2 Problem Formulation 
External flows involve a flow which is 

essentially infinite in extent over the outer surface of 

a body. Flow over an isothermal flat plate aligned 

with the flow is one example for such a flow.  

The basic governing partial differential equations 

for description of mass, momentum, and energy 

conservation of two-dimensional laminar steady-

state forced convection boundary layers are given 

below, noting that the variable physical properties 

and viscous thermal dissipation are ignored [23], 
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where ∞∞ TTU w  and  ,  are the velocity component 

beyond the boundary layer, temperature on the wall 

and temperature beyond the boundary layer, 

respectively.  

 
Introducing a stream function ),( yxψ  defining 

velocity components 
xy vu ψψ  -   , == , and 

dimensionless temperature 
w

TT
yx θθ ∞−=),( , where 

∞−= TTwwθ . Equations (2) and (3) reduce to 
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while  equation (1) is identically satidsfied. 

Further the boundary conditions read as, 
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3  Determination of the  Absolute 

Invariants (Invariants of Group):  

  
Consider the one-parameter group of 

transformations given by 
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acting on base space u)(x,  which has infinitesimal 

generator of the form (35), with 
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We put 
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where 0a  denotes the value of a which yields the 

identity element of the group, such group has 

1−+mn  absolute invariants, 1−n  of them for the 

subgroup 1S . Utilizing the systematic technique of 

determination a complete set of absolute invariants, 

Moran and Gaggioli [18], i.e. 

 

    The function ),...,,,...,( m
n uuxx 1

1λ  is an absolute 

invariant of the group 1G  with generator X  if and 

only if 
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However, to determining the absolute invariants of 

1G , it is sufficient to solve the equation (10). This is 

possible via well-known characteristics techniques 

for solving linear PDE, 
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Thus, a set of absolute variables are determining by 

the nontrivial solutions of simultaneous equations, 

these simultaneous equations also suggest other 

possible sets of transformations and corresponding 

invariants. Such invariants generate new variables 

(similarity variables). We suppose kx  is the 

independent variable to be eliminated. There are 

many sets of invariants and corresponding new 

variables: 

Set 1: If 0≠kα the invariants of 1G , are  
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which generate the following new variables: 
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Set 2: If 0=kα the invariants of 1G , are 
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which generate the following new variables: 
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4  Morgan's Method 

 
First step in Morgan's method is define the 

simple group of transformations and carry out the 

transformation on the differential equations (6)-(7), 

to show that it is invariant under this 

transformations. 

     Consider the linear group of transformation (one-

parameter group) 
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Substitute of (13) into (6)-(7), we get 
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Which be absolute invariant under (13) if; 
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or more general, conformally invariant if; 
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where m , n  are arbitrary constants. 
    Second step is determining the invariants by trial 

and/or inspection. By eliminating the parameter A  
from (13), and make use (15) we obtain, 
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These combined variables enable us to derive new 

variables as 
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   We test whether the auxiliary conditions are 

expressible, without inconsistency, in terms of these 

new variables. This is, if 0 =4α . Put 0 =4α  in (16) 

we get the similarity variables which transform 

invariantly, the auxiliary conditions as well as the 

differential equations, 
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It seen that in this procedure there is no systematic 

approach to determine the absolute invariants and 

that the new variables generated by these absolute 

invariants were found for the differential equations 

alone, this leads to wastage of efforts if the auxiliary 

conditions are inexpressible in terms of such new 

variables. 

 

 

5 Systematic Group Formalism 

Moran and Gaggioli [18]: 

 
Drawbacks in the previous section were 

overcome by [18], [20]. Invariant analysis consider 

for auxiliary conditions as well as the differential 

equations and then absolute invariants determined 

by a systematic procedure.  

     Consider again, eqs. (6)-(7). First step is also 
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transformation, 
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Where C 's  and K 's are real-valued and at least 

differentiable in the real argument a . It is 

straightforward to show that (6)-(7) are invariant 

under G , by substitute (20) into (6)-(7), yield 
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The conformal invariance of (21)-(22) implies 
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The vanishing of 1R , 2R  and invariant of boundary 

conditions (8), implying that  
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In view of (23), and invoking the results (24), we 

get 
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By substituting from (24) and (25) into (20) we get 

the class of group. 
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Next step is finding the absolute invariants of G′  
via systematic technique depend on invoked a basic 

theorem from group theory, i.e., 

),( yxη is an absolute invariant of subgroup S′ if it 
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These absolute variables generate the similarity 

variables of the problem of the form 
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Using these similarity variables, (6)-(8) becomes, 
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For (27)-(28) to be reduced to an expression in 

terms of the similarity variables; it is necessary that 
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Which represent the similarity equations of  the 

problem, with boundary conditions of form (19). 

 

 

6  New Systematic method 
The drawbacks in the previous two methods 

were overcome by Adnan et al [2], [3]. In this 

method, group of the form (20) will be defined 

again in beginning of the analysis which has sets of 

absolute invariants and corresponding new variables 

of the form (11) and (12). The method has only one 

step, expressing of the basic equations (6)-(7) along 

with the boundary conditions (8) in terms of those 

new variables. 
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For (31)-(32) to be reduced to an expression in 

terms of the new variables, it is necessary that 

81 ΚΚ ,..., should be constants or functions of η  alone 

and 11109 ΚΚΚ  , .  should be constants. This is, only 

whenever: 
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 Which be solved to give 
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Thus, with help these relations, the new variables 

(30) become similarity variables and then the 

corresponding similarity equations of  (6)-(7), take 

similar form to those reported in the previous 

section. 
 

Note that: most the relations in (23)-(25) and 

values of the coefficients a 's and b 's  in 
previous section  may be find out easily by (33). 

And so it is possible to deduce the group under 

which the problem invariant if needed without going 

to deduce it separately. 

 

Moreover, by simple manipulation to Eqs. (31)-(32), 

one can derive another form of similarity variables. 

For example; multiply (28) and (29) by 1
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Substitute these relations in (30), we get new form 

of the similarity variables and then similarity 

equations corresponding  to (6)-(7) similar to  those 

reported in Section 4.  
 

Case 2: Similarly, make use (12); we can invoke 
another set of new variables, as 
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Assume 16543 ===== BBBBA . Eqs. (6)- (7), becomes 
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For (35)-(36) to be reduced to an expression in 

terms of the new variables, it is necessary that 

81 ΚΚ ,..., should be constants or functions of 

η alone and 11109 ΚΚΚ ,,  should be constants. This 

is, only whenever: 

 

mandmmm 22

0

1

6

1

5

1

3

1

2

46542

=−==−=

=====

β
α

β
α

β
α

β
α

αββββ

         ,  ,

,
 

 
Where m  is arbitrary constant. Using these 

relations, (32)-(33), become 
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With the transformed boundary conditions (19). 

 

    Moreover, by simple manipulation to Eqs. (35)-

(36), one can derive another form of similarity 

variables. For example; multiply (36) by 

x
e

)(
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1

5

1

2

α
α

α
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α
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−−
, and repeating the process we obtain 

same results reported above with 
1

5

β
α
   is arbitrary 

constant n  (say). i.e.,  (37)-(38), become  
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With the transformed boundary conditions (19). 

 

 

 

6 Conclusion 
General form of absolute invariants and the 

corresponding new variables to group of the form 

(9) are determined. The results obtained here reveal 

that such new variables are applicable directly to   

partial differential equations, specially arising in 

engineering and applied science.  

 Three methods of similarity analysis which 

depend on the finite group of transformations have 

been carried out to present similarity equations of 

the problem of laminar forced convection on a 

horizontal plate.  

The analysis and comparisons carried out here 

show that the effectiveness of the new systematic 

method in obtaining similarity equations for the 

problem. The results are found to be in agreement 

and thus the new systematic method is the simpler 

and more general.  Four sets of similarity equations  

are obtained by this method and, it is found that, 

these sets of similarity equations include all  

similarity equations found by other methods. 

The Formulation of the New Systematic Method 

is explained in appendix -A below. 

It is hoped that the method presented here can be 

used effectively in the situations where the 

differential equations are more complicated. 
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Appendix (A) 
 

Group of Transformation:  

 
Consider the situation of a system E of 
N differential equations of k-th-order in n  

independent variables ),...,(x n1 xx=  andm dependent 

variables ),x)(,...,x)((u(x) m1 uu=  given by 
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acting on base space u)(x,  which has infinitesimal 

form given by 
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with infinitesimal generators of the form 
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By definition, 1G  has 1m-n+  functionally 
independent absolute invariants of the form 
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Formulation of the New Systematic 

Method: 

 
It is well-known that any DE of order k  be 

invariant under one-parameter group 1G , if it is 

invariant under the k-th extended group )(kG1 of 1G  . 

Therefore, the system E  is invariant under the 
group represented by (41), if it is invariant under the 

k-th extended group, )(kG1  , of (41) . According to 

[25], the necessary and sufficient conditions of this 

system to be invariance under an extended group is 
that this system satisfy a system of homogeneous 
linear partial differential equations 

 

0)uu,...,u,x,( k =∂∂µEX k  

 

for each N1,...,=µ , which has 1−p  differential 

invariants, where lmnp ++= and l  is number of the 

derivatives thereof up to the k-th order. We 

therefore add the following invariants to list in (43): 
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It is well known that an arbitrary function ϕ   

(general form of E ) obtained by equating an 1−p  

absolute invariants of )(kG1  to zero is invariant under 
)(kG1  ; that is, 

0),...,( =−11 pλλϕ  

Where 11 −pλλ ,..., are 11 −ΩΩ n,..., , sg'  and sg'ˆ   

respectively.  Since ϕ   be invariant under )(kG1 , 

then according to Morgan's theorem,  ϕ  can be 

expressed in terms of new variables 11 −nηη ,..., ; as 

the independent variables and mFF ,...,1  as 

dependent variables such that 
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The result be, 
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We are easily led to the following result: 
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Lemma 1: µE  has the form µϕ  if and only if µE  

is expressible in terms of the new invariants 

),...,;,...,( mn FF111 −ηη . 

 
    As a result, we will establish the central results 

which are the basis of our method. 
 

Theorem 1: If a system E  is expressed in terms of 

1−+mn new variables (44) of 1G , then it is 

invariant under this group. 
 

Proof: Suppose that ),...,( NE 1=µµ  are expressible 

in terms of the ( 1−+mn ) new variables, (44). Then, 

by Lemma (1), µE  have the form µϕ   and so 
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Since λ 's  satisfying  )(  0)(
11,...,p-γX k ==γλ .  

 

Hence E  is invariant under the given group. 
According to this theorem if the system E  express 

in terms of those new variable, then it is invariant 

under the group and such new variable are similarity 

variables. 
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